Spatial Variability of Surface Waves and Nearshore Currents Induced by Hurricane Harvey along the Southern Texas Coast

Author:

Romero-Arteaga Angélica,Ruiz de Alegría-Arzaburu AmaiaORCID,Esquivel-Trava Bernardo

Abstract

Extreme weather events such as hurricanes are expected to become more severe with the human-induced increase in average global temperatures, exacerbating the risk of major damage. Efforts to predict these events typically require detailed hydrodynamic data that are difficult to collect in the field. Here, nearshore data collected with three ADCP moorings were used to describe the hydrodynamics induced by Hurricane Harvey along the southern Texas coast. Wave spectra and nearshore current variations were analyzed along the hurricane’s trajectory and compared to other offshore locations. The results indicate that winds intensified along the coast as Harvey approached the Port Aransas coastline. Southerly wind stresses of ~−0.9 Nm−2 generated ~2 ms−1 depth-averaged flows towards the southwest close to landfall in the north, while flows of ~1 ms−1 and <1 ms−1 were measured in the center and the south of the study site, respectively. The hydrodynamics induced by the hurricane were compared to those induced by an intense synoptic-scale cold front (CF). Both events generated southward-directed alongshore wind stresses of similar magnitudes (τy ~−0.4 Nm−2) that caused similar depth-averaged flows (0.5 to 0.7 ms−1) and wave energy conditions (Hs of ~4 m) in the south. Harvey caused extremely energetic conditions close to landfall in the north compared to the CF; depth-averaged flows and Hs of 2 ms−1 and 10 m were induced by Harvey, as opposed to 0.6 ms−1 and 4 m by the CF, respectively. While intense currents (>1 ms−1) and waves (Hs > 4 m) lasted for less than a day during Harvey, these persisted a few days longer during the CF. This study highlights the relevant role of synoptic-scale cold fronts in modulating the nearshore hydrodynamics, which occur more frequently than tropical cyclones in the northwestern Gulf of Mexico.

Funder

National Council of Science and Technology of Mexico–Mexican Ministry of Energy–Hydrocarbon Trust

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3