Attribution of 2020 hurricane season extreme rainfall to human-induced climate change

Author:

Reed Kevin A.ORCID,Wehner Michael F.ORCID,Zarzycki Colin M.

Abstract

AbstractThe 2020 North Atlantic hurricane season was one of the most active on record, causing heavy rains, strong storm surges, and high winds. Human activities continue to increase the amount of greenhouse gases in the atmosphere, resulting in an increase of more than 1 °C in the global average surface temperature in 2020 compared to 1850. This increase in temperature led to increases in sea surface temperature in the North Atlantic basin of 0.4–0.9 °C during the 2020 hurricane season. Here we show that human-induced climate change increased the extreme 3-hourly storm rainfall rates and extreme 3-day accumulated rainfall amounts during the full 2020 hurricane season for observed storms that are at least tropical storm strength (>18 m/s) by 10 and 5%, respectively. When focusing on hurricane strength storms (>33 m/s), extreme 3-hourly rainfall rates and extreme 3-day accumulated rainfall amounts increase by 11 and 8%, respectively.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference27 articles.

1. NOAA. Atlantic Hurricane Season, accessed: 25th May 2021. Available at: https://www.nhc.noaa.gov/data/tcr/index.php?season=2020&basin=atl (2020).

2. NOAA National Centers for Environmental Information (NCEI). U.S. Billion-Dollar Weather and Climate Disasters, accessed: 3rd Aug 2021. Available at: https://www.ncdc.noaa.gov/billions/.

3. IPCC. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [eds Stocker, T. F. et al.]. (Cambridge University Press, 2013).

4. Knutson, T., Kossin, J. P., Mears, C., Perlwitz, J. & Wehner, M. F. Climate Science Special Report: Fourth National Climate Assessment, Volume I (eds Wuebbles, D. J. et al.) 114–132 (U.S. Global Change Research Program, 2017).

5. Camargo, S. J. et al. Characteristics of model tropical cyclone climatology and the large-scale environment. J. Clim. 33, 4463–4487 (2020).

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3