Abstract
Four-mecanum-wheeled omnidirectional mobile robots (FMOMR) are widely used in many practical scenarios because of their high mobility and flexibility. However, the performance of trajectory tracking would be degenerated largely due to various reasons. To deal with this issue, this paper proposes a data-driven algorithm by using the T-S fuzzy quaternion-value neural network (TSFQVNN). TSFQVNN is tailored to obtain the controlled autoregressive integral moving average (CARIMA) model, and then the generalized predictive controller (GPC) is designed based on the CARIMA model. In this way, the spatial relationship between the three-dimensional pose coordinates can be preserved and training times can be reduced. Furthermore, the convergence of the proposed algorithm is verified by the Stone–Weierstrass theorem, and the convergence conditions of the algorithm are discussed. Finally, the proposed control scheme is applied to the three-dimensional (3D) trajectory tracking problem on the arc surface, and the simulation results prove the necessity and feasibility of the algorithm.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献