A Review on Data-Driven Quality Prediction in the Production Process with Machine Learning for Industry 4.0

Author:

Md Abdul Quadir,Jha KeshavORCID,Haneef Sabireen,Sivaraman Arun Kumar,Tee Kong FahORCID

Abstract

The quality-control process in manufacturing must ensure the product is free of defects and performs according to the customer’s expectations. Maintaining the quality of a firm’s products at the highest level is very important for keeping an edge over the competition. To maintain and enhance the quality of their products, manufacturers invest a lot of resources in quality control and quality assurance. During the assembly line, parts will arrive at a constant interval for assembly. The quality criteria must first be met before the parts are sent to the assembly line where the parts and subparts are assembled to get the final product. Once the product has been assembled, it is again inspected and tested before it is delivered to the customer. Because manufacturers are mostly focused on visual quality inspection, there can be bottlenecks before and after assembly. The manufacturer may suffer a loss if the assembly line is slowed down by this bottleneck. To improve quality, state-of-the-art sensors are being used to replace visual inspections and machine learning is used to help determine which part will fail. Using machine learning techniques, a review of quality assessment in various production processes is presented, along with a summary of the four industrial revolutions that have occurred in manufacturing, highlighting the need to detect anomalies in assembly lines, the need to detect the features of the assembly line, the use of machine learning algorithms in manufacturing, the research challenges, the computing paradigms, and the use of state-of-the-art sensors in Industry 4.0.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3