Anomaly Detection in the Production Process of Stamping Progressive Dies Using the Shape- and Size-Adaptive Descriptors

Author:

Ma Liang1,Meng Fanwu1ORCID

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing100081, China

Abstract

In the production process of progressive die stamping, anomaly detection is essential for ensuring the safety of expensive dies and the continuous stability of the production process. Early monitoring processes involve manually inspecting the quality of post-production products to infer whether there are anomalies in the production process, or using some sensors to monitor some state signals during the production process. However, the former is an extremely tedious and time-consuming task, and the latter cannot provide warnings before anomalies occur. Both methods can only detect anomalies after they have occurred, which usually means that damage to the die has already been caused. In this paper, we propose a machine-vision-based method for real-time anomaly detection in the production of progressive die stamping. This method can detect anomalies before they cause actual damage to the mold, thereby stopping the machine and protecting the mold and machine. In the proposed method, a whole continuous motion scene cycle is decomposed into a standard background template library, and the potential anomaly regions in the image to be detected are determined according to the difference from the background template library. Finally, the shape- and size-adaptive descriptors of these regions and corresponding reference regions are extracted and compared to determine the actual anomaly regions. The experimental results indicate that this method can achieve reasonable accuracy in the detection of anomalies in the production process of stamping progressive dies. The experimental results demonstrate that this method not only achieves satisfactory accuracy in anomaly detection during the production of progressive die stamping, but also attains competitive performance levels when compared with methods based on deep learning. Furthermore, it requires simpler preliminary preparations and does not necessitate the adoption of the deep learning paradigm.

Funder

Key R&D Projects of Hebei Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3