Multifunctional Biomimetic Composite Coating with Antireflection, Self-Cleaning and Mechanical Stability

Author:

Jiao Zhibin12,Wang Ze13ORCID,Wang Zhaozhi2,Han Zhiwu1

Affiliation:

1. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China

2. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China

3. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China

Abstract

Antireflective and self-cleaning coatings have attracted increasing attention in the last few years due to their promising and wider applications such as stealth, display devices, sensing, and other fields. However, existing antireflective and self-cleaning functional material are facing problems such as difficult performance optimization, poor mechanical stability, and poor environmental adaptability. Limitations in design strategies have severely restricted coatings’ further development and application. Fabrication of high-performance antireflection and self-cleaning coatings with satisfactory mechanical stability remain a key challenge. Inspired by the self-cleaning performance of nano-/micro-composite structure on natural lotus leaves, SiO2/PDMS/matte polyurethane biomimetic composite coating (BCC) was prepared by nano-polymerization spraying technology. The BCC reduced the average reflectivity of the aluminum alloy substrate surface from 60% to 10%, and the water contact angle (CA) was 156.32 ± 0.58°, illustrating the antireflective and self-cleaning performance of the surface was significantly improved. At the same time, the coating was able to withstand 44 abrasion tests, 230 tape stripping tests, and 210 scraping tests. After the test, the coating still showed satisfactory antireflective and self-cleaning properties, indicating its remarkable mechanical stability. In addition, the coating also displayed excellent acid resistance, which has important value in aerospace, optoelectronics, industrial anti-corrosion, etc.

Funder

National Key Research and Development Program of China

the China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3