Preparation and Characterization of Biomimetic SiO2-TiO2-PDMS Composite Hydrophobic Coating with Self-Cleaning Properties for Wall Protection Applications

Author:

Xia Xiaojing,Liu Jue,Liu Yang,Lei Zijie,Han Yutong,Zheng Zeping,Yin Jian

Abstract

Superhydrophobic surfaces have great potential for self-cleaning, anti-icing, and drag-reducing characteristics because of their water repellent property. This study demonstrates the potential application of coatings to protect architectures from detrimental atmospheric effects via a self-cleaning approach. In this research, a SiO2-TiO2-PDMS composite coating was prepared on the surface of building walls by the sol-gel method. Tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TTIP) were used as inorganic precursors, and polydimethylsiloxane (PDMS) was used as low surface energy substances. The effects of TEOS and PDMS content on microstructure, wettability, and self-cleaning performance of coating wall surfaces were investigated by conducting various tests, including scanning electron microscopy (SEM), X-ray energy spectroscopy (EDS), angle measurement, and Fourier transform infrared spectroscopy (FTIR). The results indicated that hydrolysis and condensation reactions of TEOS, TTIP, and PDMS were performed on the surface of the substrates, leading to a micro- and nano-structure similar to the surface of lotus leaves. When the molar ratio of PDMS to TEOS was 1:5, the static contact angle of the coating reached a maximum of 152.6°. At this point, the coated surface was able to resist the adhesion of particle pollutants and liquid pollutants, which could keep the walls clean and possess a good ability of self-cleaning. In conclusion, SiO2-TiO2-PDMS composite coating is potentially useful in wall protection applications with its hydrophobic and environmentally friendly superhydrophobic properties.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3