Inference of an Optimal Ice Particle Model through Latitudinal Analysis of MISR and MODIS Data

Author:

Wang Yi,Hioki Souichiro,Yang Ping,King Michael,Di Girolamo Larry,Fu Dongwei,Baum Bryan

Abstract

The inference of ice cloud properties from remote sensing data depends on the assumed forward ice particle model, as they are used in the radiative transfer simulations that are part of the retrieval process. The Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 (MC6) ice cloud property retrievals are produced in conjunction with a single-habit ice particle model with a fixed degree of ice particle surface roughness (the MC6 model). In this study, we examine the MC6 model and five other ice models with either smoother or rougher surface textures to determine an optimal model to reproduce the angular variation of the radiation field sampled by the Multi-angle Imaging Spectroradiometer (MISR) as a function of latitude. The spherical albedo difference (SAD) method is used to infer an optimal ice particle model. The method is applied to collocated MISR and MODIS data over ocean for clouds with temperatures ≤233 K during December solstice from 2012–2015. The range of solar zenith angles covered by the MISR cameras is broader at the solstices than at other times of the year, with fewer scattering angles associated with sun glint during the December solstice than the June solstice. The results suggest a latitudinal dependence in an optimal ice particle model, and an additional dependence on the solar zenith angle (SZA) at the time of the observations. The MC6 model is one of the most optimal models on the global scale. In further analysis, the results are filtered by a cloud heterogeneity index to investigate cloudy scenarios that are less susceptible to potential 3D effects. Compared to results for global data, the consistency between measurements and a given model can be distinguished in both the tropics and extra-tropics. The SAD analysis suggests that the optimal model for thick homogeneous clouds corresponds to more roughened ice particles in the tropics than in the extra-tropics. While the MC6 model is one of the models most consistent with the global data, it may not be the most optimal model for the tropics.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3