Abstract
Three parallel Visible/Infrared Imager Radiometer Suite (VIIRS) aerosol products (SOAR, NOAA, and AERDT) provided data since 2012. It is necessary to study the performances and advantages of different products. This study aims to analyze the accuracy and error of these products over the ocean and compare them with each other. The results show that the three VIIRS ocean aerosol retrievals (including total aerosol optical depth (AOD), fine mode fraction, Ångström exponent (AE), and fine AOD (AODF)) correlate well with AErosol RObotic NETwork (AERONET) retrievals (e.g., correlation >0.895 for AOD and >0.825 for AE), which are comparable to the newest moderate-resolution imaging spectro-radiometer (MODIS) retrievals. Overall, the SOAR retrievals with quality filtering have the best validation accuracy of all parameters. Therefore, it is more recommended to use. The differences in the annual AOD spatial patterns of different products are small (bias < 0.016), but their AE spatial patterns are evidently different (bias > 0.315), indicating the large uncertainty of VIIRS AE. Error analysis shows that the scattering angle and wind speed affect aerosol retrieval. Application of the non-spherical dust model may reduce the dependence of retrieval bias on the scattering angle. Overall, this study provides validation support for VIIRS products usage and possible algorithm improvements.
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献