Multi-Objective Evolutionary Design of an Electric Vehicle Chassis

Author:

Luque PabloORCID,Mántaras Daniel A.ORCID,Maradona Álvaro,Roces JorgeORCID,Sánchez LucianoORCID,Castejón LuisORCID,Malón Hugo

Abstract

An iterative algorithm is proposed for determining the optimal chassis design of an electric vehicle, given a path and a reference time. The proposed algorithm balances the capacity of the battery pack and the dynamic properties of the chassis, seeking to optimize the tradeoff between the mass of the vehicle, its energy consumption, and the travel time. The design variables of the chassis include geometrical and inertial values, as well as the characteristics of the powertrain. The optimization is constrained by the slopes, curves, grip, and posted speeds of the different sections of the track. Particular service constraints are also considered, such as limiting accelerations due to passenger comfort or cargo safety. This methodology is applicable to any vehicle whose route and travel time are known in advance, such as delivery vehicles, buses, and race cars, and has been validated using telemetry data from an internal combustion rear-wheel drive race car designed for hill climb competitions. The implementation of the proposed methodology allows to reduce the weight of the battery pack by up to 20%, compared to traditional design methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3