Decoupling Control of Yaw Stability of Distributed Drive Electric Vehicles

Author:

Wang Weijun1,Liu Zefeng1,Yang Songlin2,Song Xiyan1,Qiu Yuanyuan1,Li Fengjuan1

Affiliation:

1. Xinjiang Institute of Technology, School of Mechanical and Electrical Engineering, Akesu 843000, China

2. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China

Abstract

Most of the research on driving stability control of distributed drive electric vehicles is based on a yaw motion design controller. The designed controller can improve the lateral stability of the vehicle well but rarely mentions its changes to the roll and pitch motion of the body, and the uneven distribution of the driving force will also cause instability in the vehicle speed, resulting in wheel transition slip, wheel sideslip, and vehicle stability loss. In order to improve the spatial stability of distributed-driven electric vehicles and resolve the control instability caused by their motion coupling, a decoupled control strategy of yaw, roll, and pitch motion based on multi-objective constraints was proposed. The strategy adopts hierarchical control logic. At the upper level, a yaw motion controller based on robust model predictive control, a roll motion controller, and a pitch motion controller based on feedback optimal control are designed. In the lower level, through the motion coupling analysis of the vehicle yaw control process, based on the coupling analysis, the vehicle yaw, roll, and pitch decoupling controller based on multi-objective constraints is designed. Finally, the effectiveness of the decoupling controller is verified.

Funder

National Natural Science Foundation of China

Research on modeling and control strategy of lateral stability of high ground clearance sprayer

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3