Abstract
We report on the theoretical investigation of using an amorphous Ge0.83Si0.17 lateral taper to enable a low-loss small-footprint optical coupling between a Si3N4 waveguide and a low-voltage Ge-based Franz–Keldysh optical modulator on a bulk Si substrate using 3D Finite-Difference Time-Domain (3D-FDTD) simulation at the optical wavelength of 1550 nm. Despite a large refractive index and optical mode size mismatch between Si3N4 and the Ge-based modulator, the coupling structure rendered a good coupling performance within fabrication tolerance of advanced complementary metal-oxide semiconductor (CMOS) processes. For integrated optical modulator performance, the Si3N4-waveguide-integrated Ge-based on Si optical modulators could simultaneously provide workable values of extinction ratio (ER) and insertion loss (IL) for optical interconnect applications with a compact footprint.
Funder
Kasetsart University Research and Development Institute
Thailand Research Fund
Office of the Higher Education Commission
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献