Investigating Engineering Student Learning Style Trends by Using Multivariate Statistical Analysis

Author:

Abdelhadi Abdelhakim,Ibrahim Yasser,Nurunnabi MohammadORCID

Abstract

This study aims to use group technology to classify students at the classroom level into clusters according to their learning style preferences. Group technology is used, due to the realization that many problems are similar, and that by grouping similar problems, single solutions can be found for a set of problems. The Felder and Silverman style, and the index learning style (ILS) are used to find student learning style preferences; students are grouped into clusters based on the similarities of their preferences, by using multivariate statistical analysis. Based on the developed groups, instructors can use the proper teaching style to teach their students. The formation of clusters based on the statistical analyses of two sets of data collected from students of two classes at the same level, belonging to same engineering department indicates that each class has different learning style preferences. This is an eye-opener to educators, in that different teaching styles can be used for their students, based on the students’ learning styles, even though the students seem to have a common interest.

Publisher

MDPI AG

Subject

Public Administration,Developmental and Educational Psychology,Education,Computer Science Applications,Computer Science (miscellaneous),Physical Therapy, Sports Therapy and Rehabilitation

Reference51 articles.

1. Learning styles of natural sciences, social sciences and humanities students at graduate level;Khurshid;Interdiscip. J. Contemp. Res. Bus.,2012

2. Learning styles and overall academic achievement in a specific educational system;Abidin;Int. J. Humanit. Soc. Sci.,2011

3. A study of students’ learning styles, discipline attitudes and knowledge acquisition in technology-enhanced probability and statistics education;Christou;MERLOT J. Online Learn. Teach.,2010

4. The Big Five personality traits, learning styles, and academic achievement

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3