mPILOT-Magnetic Field Strength Based Pedestrian Indoor Localization

Author:

Ashraf Imran,Hur Soojung,Park Yongwan

Abstract

An indoor localization system based on off-the-shelf smartphone sensors is presented which employs the magnetometer to find user location. Further assisted by the accelerometer and gyroscope, the proposed system is able to locate the user without any prior knowledge of user initial position. The system exploits the fingerprint database approach for localization. Traditional fingerprinting technology stores data intensity values in database such as RSSI (Received Signal Strength Indicator) values in the case of WiFi fingerprinting and magnetic flux intensity values in the case of geomagnetic fingerprinting. The down side is the need to update the database periodically and device heterogeneity. We solve this problem by using the fingerprint database of patterns formed by magnetic flux intensity values. The pattern matching approach solves the problem of device heterogeneity and the algorithm’s performance with Samsung Galaxy S8 and LG G6 is comparable. A deep learning based artificial neural network is adopted to identify the user state of walking and stationary and its accuracy is 95%. The localization is totally infrastructure independent and does not require any other technology to constraint the search space. The experiments are performed to determine the accuracy in three buildings of Yeungnam University, Republic of Korea with different path lengths and path geometry. The results demonstrate that the error is 2–3 m for 50 percentile with various buildings. Even though many locations in the same building exhibit very similar magnetic attitude, the algorithm achieves an accuracy of 4 m for 75 percentile irrespective of the device used for localization.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing risk of acute respiratory infectious diseases in crowded indoor settings with digital twin and precision trajectory approach;Environmental and Sustainability Indicators;2024-09

2. Enabling Technologies and Techniques for Floor Identification;ACM Computing Surveys;2024-07-17

3. Pedestrian Simulation Challenges: Modeling Techniques and Emerging Positioning Technologies for ITS Applications;IEEE Transactions on Intelligent Transportation Systems;2024

4. Landmark Extraction and Matching for Robot Positioning Based on Intensity Differential of Magnetic Field;Proceedings of the 2023 7th International Conference on High Performance Compilation, Computing and Communications;2023-06-17

5. Intelligent Geomagnetic Indoor Positioning System;Electronics;2023-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3