Intelligent Geomagnetic Indoor Positioning System

Author:

Kuo Yen-Hui1,Wu Eric Hsiao-Kuang1

Affiliation:

1. Department of Computer Science and Information Engineering, National Central University, Taoyuan City 320317, Taiwan

Abstract

In the past, several firefighters have died in disaster relief operations. Although the firefighters were fully equipped, the scene of the disaster was smoky and disorienting, making the firefighters unable to identify their location. The commander wanted to direct the firefighters outside but could not confirm the correct location of the firefighters, causing delays in rescue. GPS cannot support indoor positioning or preset indoor positioning facilities at the moment of fire extinguishing. However, geomagnetism is everywhere, and it can be used to identify one’s location. Unfortunately, due to the uncertainty of the magnetic field strength, indoor geomagnetism is affected by the building environment, and the existing magnetic positioning methods have difficulty obtaining a location. To solve this problem, we propose a new incremental indoor localization scheme based on the difference in geomagnetic intensity. The proposed method achieves indoor localization in 2D environments successfully. The novelty of our geomagnetic indoor positioning system is that it can perform indoor positioning without adding any indoor positioning facilities, and the accuracy can reach 0.8~1.5 m. This article aims to verify that the geomagnetic turbulence filtering algorithm can filter out abnormal geomagnetic intensity, that the incremental algorithm can estimate the position of human motion, and that geomagnetism can be used for indoor positioning without any preset infrastructure. The contribution of this paper is that we have developed a practical system that can be used without any infrastructure and can be used for indoor positioning with meter-level accuracy. The geomagnetic indoor positioning system can be integrated with a wireless network and applied to disaster relief.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The application of YOLOv7 in the detection and positioning of vehicles in the digital workshop;2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL);2024-04-19

2. Relabeling for Indoor Localization Using Stationary Beacons in Nursing Care Facilities;Sensors;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3