The Extraction Method of Alfalfa (Medicago sativa L.) Mapping Using Different Remote Sensing Data Sources Based on Vegetation Growth Properties

Author:

Wang Ruifeng,Shi Fengling,Xu Dawei

Abstract

Alfalfa (Medicago sativa L.) is one of the most widely planted forages due to its useful characteristics. Although alfalfa spatial distribution is an important source of basic data, manual surveys incur high survey costs, require large workloads and confront difficulties in collecting data over large areas; remote sensing compensates for these shortcomings. In this study, the time-series variation characteristics of different vegetation types were analyzed, and the extraction method of alfalfa mapping was established according to different spatial- and temporal-resolution remote sensing data. The results provided the following conclusions: (1) when using the wave peak and valley number of normalized difference vegetation index (NDVI) curves, in the study area, the number of wave peak needed to be greater than 2 and the number of wave valley needed to be greater than 1; (2) 91.6% of alfalfa sampling points were extracted by moderate resolution imaging spectroradiometer (MODIS) data using the wave peak and valley method, and 5.0% of oats sampling points were extracted as alfalfa, while no other vegetation types met these conditions; (3) 85.3% of alfalfa sampling points were identified from Sentinel-2 multispectral instrument (MSI) data using the wave peak and valley method; 6.0% of grassland vegetation and 8.7% of oats satisfied the conditions, while other vegetation types did not satisfy this rule; and (4) the temporal phase selection was very important for alfalfa extraction using single-time phase remote sensing images; alfalfa was easily separated from other vegetation at the pre−wintering stage and was more difficult to separate at the spring regreening stage due to the variability in the alfalfa overwintering rate; the overall classification accuracy was 92.9% with the supervised classification method using support vector machine (SVM) at the pre-wintering stage. These findings provide a promising approach to alfalfa mapping using different remote sensing data.

Funder

Key Projects in Science and Technology of Inner Mongolia

Innovation Team of “Genetic Improvement and Utilization of Native Grass Germplasm Resources in Inner Mongolia”

Special Funding for Modern Agricultural Technology Systems from the Chinese Ministry of Agriculture

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3