A Deep Learning Framework for Processing and Classification of Hyperspectral Rice Seed Images Grown under High Day and Night Temperatures

Author:

Díaz-Martínez Víctor1,Orozco-Sandoval Jairo1ORCID,Manian Vidya1ORCID,Dhatt Balpreet K.2,Walia Harkamal2

Affiliation:

1. University of Puerto Rico, Mayagüez, PR 00681, USA

2. University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Abstract

A framework combining two powerful tools of hyperspectral imaging and deep learning for the processing and classification of hyperspectral images (HSI) of rice seeds is presented. A seed-based approach that trains a three-dimensional convolutional neural network (3D-CNN) using the full seed spectral hypercube for classifying the seed images from high day and high night temperatures, both including a control group, is developed. A pixel-based seed classification approach is implemented using a deep neural network (DNN). The seed and pixel-based deep learning architectures are validated and tested using hyperspectral images from five different rice seed treatments with six different high temperature exposure durations during day, night, and both day and night. A stand-alone application with Graphical User Interfaces (GUI) for calibrating, preprocessing, and classification of hyperspectral rice seed images is presented. The software application can be used for training two deep learning architectures for the classification of any type of hyperspectral seed images. The average overall classification accuracy of 91.33% and 89.50% is obtained for seed-based classification using 3D-CNN for five different treatments at each exposure duration and six different high temperature exposure durations for each treatment, respectively. The DNN gives an average accuracy of 94.83% and 91% for five different treatments at each exposure duration and six different high temperature exposure durations for each treatment, respectively. The accuracies obtained are higher than those presented in the literature for hyperspectral rice seed image classification. The HSI analysis presented here is on the Kitaake cultivar, which can be extended to study the temperature tolerance of other rice cultivars.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3