Research on Maize Seed Classification and Recognition Based on Machine Vision and Deep Learning

Author:

Xu PengORCID,Tan Qian,Zhang Yunpeng,Zha XiantaoORCID,Yang Songmei,Yang Ranbing

Abstract

Maize is one of the essential crops for food supply. Accurate sorting of seeds is critical for cultivation and marketing purposes, while the traditional methods of variety identification are time-consuming, inefficient, and easily damaged. This study proposes a rapid classification method for maize seeds using a combination of machine vision and deep learning. 8080 maize seeds of five varieties were collected, and then the sample images were classified into training and validation sets in the proportion of 8:2, and the data were enhanced. The proposed improved network architecture, namely P-ResNet, was fine-tuned for transfer learning to recognize and categorize maize seeds, and then it compares the performance of the models. The results show that the overall classification accuracy was determined as 97.91, 96.44, 99.70, 97.84, 98.58, 97.13, 96.59, and 98.28% for AlexNet, VGGNet, P-ResNet, GoogLeNet, MobileNet, DenseNet, ShuffleNet, and EfficientNet, respectively. The highest classification accuracy result was obtained with P-ResNet, and the model loss remained at around 0.01. This model obtained the accuracy of classifications for BaoQiu, ShanCu, XinNuo, LiaoGe, and KouXian varieties, which reached 99.74, 99.68, 99.68, 99.61, and 99.80%, respectively. The experimental results demonstrated that the convolutional neural network model proposed enables the effective classification of maize seeds. It can provide a reference for identifying seeds of other crops and be applied to consumer use and the food industry.

Funder

Ranbing Yang

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3