Application of Hyperspectral Imaging and Multi-Module Joint Hierarchical Residual Network in Seed Cotton Foreign Fiber Recognition

Author:

Zhang Yunlong1,Zhang Laigang1ORCID,Guo Zhijun2,Zhang Ran1

Affiliation:

1. School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China

2. Institute of Information Science and Technology, Hunan Normal University, Changsha 410081, China

Abstract

Due to the difficulty in distinguishing transparent and white foreign fibers from seed cotton in RGB images and in order to improve the recognition ability of deep learning (DL) algorithms for white, transparent, and multi-class mixed foreign fibers with different sizes in seed cotton, this paper proposes a method of combining hyperspectral imaging technology with a multi-module joint hierarchical residue network (MJHResNet). Firstly, a series of preprocessing methods are performed on the hyperspectral image (HSI) to reduce the interference of noise. Secondly, a double-hierarchical residual (DHR) structure is designed, which can not only obtain multi-scale information, but also avoid gradient vanishing to some extent. After that, a squeeze-and-excitation network (SENet) is integrated to reduce redundant information, improve the expression of model features, and improve the accuracy of foreign fiber identification in seed cotton. Finally, by analyzing the experimental results with advanced classifiers, this method has significant advantages. The average accuracy is 98.71% and the overall accuracy is 99.28%. This method has great potential for application in the field of foreign fiber identification in seed cotton.

Funder

Department of Science and Technology of Shandong Province

Liaocheng University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3