Seismic Resilience Assessment of Curved Reinforced Concrete Bridge Piers through Seismic Fragility Curves Considering Short- and Long-Period Earthquakes

Author:

Uenaga Tomoya1,Omidian Pedram2ORCID,George Riya Catherine1,Mirzajani Mohsen3ORCID,Khaji Naser2ORCID

Affiliation:

1. Civil and Environmental Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8527, Japan

2. Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran P.O. Box 14115-397, Iran

3. Department of Civil Engineering, Marand Technical Faculty, University of Tabriz, Tabriz P.O. Box 54138-89741, Iran

Abstract

Curved bridges are commonly used for logistics and emergencies in urban areas such as highway interchange bridges. These types of bridges have complicated dynamic behaviors and also are vulnerable to earthquakes, so their functionality is a critical parameter for decision makers. For this purpose, this study aims to evaluate the bridge seismic resilience under the effects of changes in deck radius (50, 100, 150 m, and infinity), pier height irregularity (Regular and Irregular), and incident seismic wave angle (0°, 45°, and 90°) under short- and long-period records. In the first step, fragility curves are calculated based on the incremental dynamic analysis and probabilistic seismic demand models. Finally, seismic resilience curves/surfaces are constructed and their interpolated values of the log-normal distribution function presented for assessing system resilience. It is found that when long-period records are applied in one given direction, the angle of incidence has the most significant effect on seismic resilience, and bridges are most vulnerable when the angle of incidence tends to 0°. The effect of deck radius on seismic resilience became more remarkable as the angle of incidence increased. Additionally, results indicate that the bridge vulnerability in long-period records is more significant than that under short-period records.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3