Affiliation:
1. Colloge of Civil and Transportation Engineering, Hohai University, P. R. China
Abstract
The seismic performance of a steel pier of box section was studied through low-cycle cyclic testing. The damaged specimens were repaired by filling with concrete and welding steel plates. The low-cycle cyclic test was then repeated. The effects of repairs were investigated by comparison of failure mode, energy dissipation performance, and ductility before and after repair. To supplement the data, the influence of different factors on the seismic bearing capacity and ductility of steel piers were analyzed by finite element method. The repair effects were compared by threshold of the displacement from the experiment. Based on the displacement angle response of the nonlinear dynamic time history analysis, the seismic performance is checked. The results show that repair had favourable effects on the damaged specimens. The horizontal bearing capacity and ductility of the specimens filled with concrete are significantly enhanced. Reinforcement by steel plates can increase the ductility and cumulative energy dissipation of the steel pier. An axial compression ratio of 0.2 and a concrete filling ratio of 30% are suggested. The horizontal bearing capacity can be improved by increasing the steel strength while the concrete strength shows little effect. The angular displacement from nonlinear dynamic time-history analysis was less than the test threshold, so the existing methods used for seismic performance verification are safe.
Funder
The National Natural Science Fund of China
The Fundamental Research Funds for the Central Universities
Publisher
World Scientific Pub Co Pte Lt
Subject
Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献