Canopy Height Estimation Using Sentinel Series Images through Machine Learning Models in a Mangrove Forest

Author:

Ghosh Sujit Madhab,Behera Mukunda Dev,Paramanik Somnath

Abstract

Canopy height serves as a good indicator of forest carbon content. Remote sensing-based direct estimations of canopy height are usually based on Light Detection and Ranging (LiDAR) or Synthetic Aperture Radar (SAR) interferometric data. LiDAR data is scarcely available for the Indian tropics, while Interferometric SAR data from commercial satellites are costly. High temporal decorrelation makes freely available Sentinel-1 interferometric data mostly unsuitable for tropical forests. Alternatively, other remote sensing and biophysical parameters have shown good correlation with forest canopy height. The study objective was to establish and validate a methodology by which forest canopy height can be estimated from SAR and optical remote sensing data using machine learning models i.e., Random Forest (RF) and Symbolic Regression (SR). Here, we analysed the potential of Sentinel-1 interferometric coherence and Sentinel-2 biophysical parameters to propose a new method for estimating canopy height in the study site of the Bhitarkanika wildlife sanctuary, which has mangrove forests. The results showed that interferometric coherence, and biophysical variables (Leaf Area Index (LAI) and Fraction of Vegetation Cover (FVC)) have reasonable correlation with canopy height. The RF model showed a Root Mean Squared Error (RMSE) of 1.57 m and R2 value of 0.60 between observed and predicted canopy heights; whereas, the SR model through genetic programming demonstrated better RMSE and R2 values of 1.48 and 0.62 m, respectively. The SR also established an interpretable model, which is not possible via any other machine learning algorithms. The FVC was found to be an essential variable for predicting forest canopy height. The canopy height maps correlated with ICESat-2 estimated canopy height, albeit modestly. The study demonstrated the effectiveness of Sentinel series data and the machine learning models in predicting canopy height. Therefore, in the absence of commercial and rare data sources, the methodology demonstrated here offers a plausible alternative for forest canopy height estimation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3