Estimation of Leaf Area Index for Dendrocalamus giganteus Based on Multi-Source Remote Sensing Data

Author:

Qin Zhen1ORCID,Yang Huanfen1,Shu Qingtai1ORCID,Yu Jinge2ORCID,Xu Li1ORCID,Wang Mingxing1,Xia Cuifen1,Duan Dandan3

Affiliation:

1. College of Forestry, Southwest Forestry University, Kunming 650224, China

2. School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China

3. Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Abstract

The Leaf Area Index (LAI) plays a crucial role in assessing the health of forest ecosystems. This study utilized ICESat-2/ATLAS as the primary information source, integrating 51 measured sample datasets, and employed the Sequential Gaussian Conditional Simulation (SGCS) method to derive surface grid information for the study area. The backscattering coefficient and texture feature factor from Sentinel-1, as well as the spectral band and vegetation index factors from Sentinel-2, were integrated. The random forest (RF), gradient-boosted regression tree (GBRT) model, and K-nearest neighbor (KNN) method were employed to construct the LAI estimation model. The optimal model, RF, was selected to conduct accuracy analysis of various remote sensing data combinations. The spatial distribution map of Dendrocalamus giganteus in Xinping County was then generated using the optimal combination model. The findings reveal the following: (1) Four key parameters—optimal fitted segmented terrain height, interpolated terrain surface height, absolute mean canopy height, and solar elevation angle—are significantly correlated. (2) The RF model constructed using a combination of ICESat-2/ATLAS, Sentinel-1, and Sentinel-2 data achieved optimal accuracy, with a coefficient of determination (R2) of 0.904, root mean square error (RMSE) of 0.384, mean absolute error (MAE) of 0.319, overall estimation accuracy (P1) of 88.96%, and relative root mean square error (RRMSE) of 11.04%. (3) The accuracy of LAI estimation using a combination of ICESat-2/ATLAS, Sentinel-1, and Sentinel-2 remote sensing data showed slight improvement compared to using either ICESat-2/ATLAS data combined with Sentinel-1 or Sentinel-2 data alone, with a significant enhancement in LAI estimation accuracy compared to using ICESat-2/ATLAS data alone. (4) LAI values in the study area ranged mainly from 2.29 to 2.51, averaging 2.4. Research indicates that employing ICESat-2/ATLAS spaceborne LiDAR data for regional-scale LAI estimation presents clear advantages. Incorporating SAR data and optical imagery and utilizing diverse data types for complementary information significantly enhances the accuracy of LAI estimation, demonstrating the feasibility of LAI inversion with multi-source remote sensing data. This approach offers an innovative framework for utilizing multi-source remote sensing data for regional-scale LAI inversion, demonstrates a methodology for integrating various remote sensing data, and serves as a reference for low-cost high-precision regional-scale LAI estimation.

Funder

National Key R and D Program of China

Joint Agricultural Project of Yunnan Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3