Monocular Visual-Inertial Navigation for Dynamic Environment

Author:

Fu Dong,Xia HaoORCID,Qiao Yanyou

Abstract

Simultaneous localization and mapping (SLAM) systems have been generally limited to static environments. Moving objects considerably reduce the location accuracy of SLAM systems, rendering them unsuitable for several applications. Using a combined vision camera and inertial measurement unit (IMU) to separate moving and static objects in dynamic scenes, we improve the location accuracy and adaptability of SLAM systems in these scenes. We develop a moving object-matched feature points elimination algorithm that uses IMU data to eliminate matches on moving objects but retains them on stationary objects. Moreover, we develop a second algorithm to validate the IMU data to avoid erroneous data from influencing image feature points matching. We test the new algorithms with public datasets and in a real-world experiment. In terms of the root mean square error of the location absolute pose error, the proposed method exhibited higher positioning accuracy for the public datasets than the traditional algorithms. Compared with the closed-loop errors obtained by OKVIS-mono and VINS-mono, those obtained in the practical experiment were lower by 50.17% and 56.91%, respectively. Thus, the proposed method eliminates the matching points on moving objects effectively and achieves feature point matching results that are realistic.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3