Author:
Zhang Yunfan,Li Hui,Shen Shengnan,Zhang Guohao,Yang Yun,Liu Zefeng,Xie Qisen,Gao Chaofu,Zhang Pengfei,Zhao Wu
Abstract
Acoustic injection is one of the most dangerous ways of causing micro-electro–mechanical systems (MEMS) failures. In this paper, the failure mechanism of acoustic injection on the microprocessor unit 6050 (MPU6050) accelerometer is investigated by both experiment and simulation. A testing system was built to analyze the performance of the MPU6050 accelerometer under acoustic injection. A MEMS disassembly method was adopted and a MATLAB program was developed to establish the geometric model of MPU6050. Subsequently, a finite element model of MPU6050 was established. Then, the acoustic impacts on the sensor layer of MPU6050 were studied by acoustic–solid coupling simulations. The effects of sound frequencies, pressures and directions were analyzed. Simulation results are well agreed with the experiments which indicate that MPU6050 is most likely to fail under the sounds of 11,566 Hz. The failure mechanism of MPU6050 under acoustic injection is the relative shift of the capacitor flats caused by acoustic–solid resonance that make the sensor detect false signal and output error data. The stress is focused on the center linkage. MPU6050 can be reliable when the sound pressure is lower than 100 dB.
Funder
Hubei Provincial Major Program of Technological Innovation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献