Abstract
Thermal stress is one of the main sources of micro-electro-mechanical systems (MEMS) devices error. The Wheatstone bridge is the sensing structure of a typical piezoresistive MEMS pressure sensor. In this study, the thermal stress induced by potting adhesive in MEMS pressure sensor was investigated by experiments, calculated by analytics and analyzed by simulations. An experiment system was used to test the sensor at different air pressures and temperatures. The error becomes greater with the decrease in pressure. A set of novel formulas were proposed to calculate the stress–strain on Wheatstone bridge. The error increases with the temperature deviating from 25 °C. A full-scale geometric model was developed, and finite element simulations were performed, to analyze the effect of the stress on MEMS pressure sensor induced by different temperatures and thicknesses of potting adhesive. Simulation results agree well with the experiments, which indicated that there is a 3.48% to 6.50% output error in 0.35 mm potting adhesive at 150 °C. With the thickness of potting adhesive increasing, the variations of output error of the Wheatstone bridge present an N-shaped curve. The output error meets a maximum of 5.30% in the potting adhesive of 0.95 mm and can be reduced to 2.47%, by increasing the potting adhesive to 2.40 mm.
Funder
the National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献