Maximizing UAV Coverage in Maritime Wireless Networks: A Multiagent Reinforcement Learning Approach

Author:

Wu Qianqian1ORCID,Liu Qiang1ORCID,Wu Zefan1,Zhang Jiye2

Affiliation:

1. Beijing Key Laboratory of Transportation Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

2. School of Information Communication and Engineering, Communication University of China, Beijing 100024, China

Abstract

In the field of ocean data monitoring, collaborative control and path planning of unmanned aerial vehicles (UAVs) are essential for improving data collection efficiency and quality. In this study, we focus on how to utilize multiple UAVs to efficiently cover the target area in ocean data monitoring tasks. First, we propose a multiagent deep reinforcement learning (DRL)-based path-planning method for multiple UAVs to perform efficient coverage tasks in a target area in the field of ocean data monitoring. Additionally, the traditional Multi-Agent Twin Delayed Deep Deterministic policy gradient (MATD3) algorithm only considers the current state of the agents, leading to poor performance in path planning. To address this issue, we introduce an improved MATD3 algorithm with the integration of a stacked long short-term memory (S-LSTM) network to incorporate the historical interaction information and environmental changes among agents. Finally, the experimental results demonstrate that the proposed MATD3-Stacked_LSTM algorithm can effectively improve the efficiency and practicality of UAV path planning by achieving a high coverage rate of the target area and reducing the redundant coverage rate among UAVs compared with two other advanced DRL algorithms.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3