Energy Saving Strategy of UAV in MEC Based on Deep Reinforcement Learning

Author:

Dai Zhiqiang,Xu Gaochao,Liu Ziqi,Ge Jiaqi,Wang Wei

Abstract

Unmanned aerial vehicles (UAVs) have the characteristics of portability, safety, and strong adaptability. In the case of a maritime disaster, they can be used for personnel search and rescue, real-time monitoring, and disaster assessment. However, the power, computing power, and other resources of UAVs are often limited. Therefore, this paper combines a UAV and mobile edge computing (MEC), and designs a deep reinforcement learning-based online task offloading (DOTO) algorithm. The algorithm can obtain an online offloading strategy that maximizes the residual energy of the UAV by jointly optimizing the UAV’s time and communication resources. The DOTO algorithm adopts time division multiple access (TDMA) to offload and schedule the UAV computing task, integrates wireless power transfer (WPT) to supply power to the UAV, calculates the residual energy corresponding to the offloading action through the convex optimization method, and uses an adaptive K method to reduce the computational complexity of the algorithm. The simulation results show that the DOTO algorithm proposed in this paper for the energy-saving goal of maximizing the residual energy of UAVs in MEC can provide the UAV with an online task offloading strategy that is superior to other traditional benchmark schemes. In particular, when an individual UAV exits the system due to insufficient power or failure, or a new UAV is connected to the system, it can perform timely and automatic adjustment without manual participation, and has good stability and adaptability.

Funder

The Development Project of Jilin Province of China

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3