Distributed Offloading for Multi-UAV Swarms in MEC-Assisted 5G Heterogeneous Networks

Author:

Ma Mingfang1ORCID,Wang Zhengming1

Affiliation:

1. College of Science, National University of Defense Technology, Changsha 410073, China

Abstract

Mobile edge computing (MEC) is a novel paradigm that offers numerous possibilities for Internet of Things (IoT) applications. In typical use cases, unmanned aerial vehicles (UAVs) that can be applied to monitoring and logistics have received wide attention. However, subject to their own flexible maneuverability, limited computational capability, and battery energy, UAVs need to offload computation-intensive tasks to ensure the quality of service. In this paper, we solve this problem for UAV systems in a 5G heterogeneous network environment by proposing an innovative distributed framework that jointly considers transmission assessment and task offloading. Specifically, we devised a fuzzy logic-based offloading assessment mechanism at the UAV side, which can adaptively avoid risky wireless links based on the motion state of an UAV and performance transmission metrics. We introduce a multi-agent advantage actor–critic deep reinforcement learning (DRL) framework to enable the UAVs to optimize the system utility by learning the best policies from the environment. This requires decisions on computing modes as well as the choices of radio access technologies (RATs) and MEC servers in the case of offloading. The results validate the convergence and applicability of our scheme. Compared with the benchmarks, the proposed scheme is superior in many aspects, such as reducing task completion delay and energy consumption.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3