Event-Triggered Collaborative Fault Diagnosis for UAV–UGV Systems

Author:

Li Runze1,Jiang Bin1ORCID,Zong Yan1,Lu Ningyun1,Guo Li2

Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China

Abstract

The heterogeneous unmanned system, which is composed of unmanned aerial vehicles (UAV) and unmanned ground vehicles (UGV), has been broadly applied in many domains. Collaborative fault diagnosis (CFD) among UAVs and UGVs has become a key technology in these unmanned systems. However, collaborative fault diagnosis in unmanned systems faces the challenges of the dynamic environment and limited communication bandwidth. This paper proposes an event-triggered collaborative fault diagnosis framework for the UAV–UGV system. The framework aims to achieve autonomous fault monitoring and cooperative diagnosis among unmanned systems, thus enhancing system security and reliability. Firstly, we propose a fault trigger mechanism based on broad learning systems (BLS), which utilizes sensor data to accurately detect and identify faults. Then, under the dynamic event triggering mechanism, the network communication topology between the UAV–UGV system and BLS is used to achieve cooperative fault diagnosis. To validate the effectiveness of our proposed scheme, we conduct experiments on a software-in-the-loop (SIL) simulation platform. The experimental results demonstrate that our method achieves high diagnosis accuracy for the UAV–UGV system.

Funder

National Natural Science Foundation of China

Outstanding Youth Foundation of Jiangsu Province of China

High Level Talent Research Start-up Fund of Anhui Polytechnic University

Open fund of the National Key Laboratory of Helicopter Aeromechanics

Natural Science Research Project of Anhui Province Universities

Outstanding Doctoral Dissertation in NUAA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3