Sound Absorption Properties of Perforated Recycled Polyurethane Foams Reinforced with Woven Fabric

Author:

Atiénzar-Navarro Roberto,del Rey RominaORCID,Alba JesúsORCID,Sánchez-Morcillo Víctor J.,Picó Rubén

Abstract

The acoustic properties of recycled polyurethane foams are well known. Such foams are used as a part of acoustic solutions in different fields such as building or transport. This paper aims to seek improvements in the sound absorption of these recycled foams when they are combined with fabrics. For this aim, foams have been drilled with cylindrical perforations, and also combined with different fabrics. The effect on the sound absorption is evaluated based on the following key parameters: perforation rate (5% and 20%), aperture size (4 mm and 6 mm), and a complete perforation depth. Experimental measurements were performed by using an impedance tube for the characterization of its acoustic behavior. Sound absorption of perforated samples is also studied—numerically by finite element simulations, where the viscothermal losses were considered; and analytically by using models for the perforated foam and the fabric. Two textile fabrics were used in combination with perforated polyurethane samples. Results evidence a modification of the sound absorption at mid frequencies employing fabrics that have a membrane-type acoustic response.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference36 articles.

1. World Health Organization. Guidelines for community noise;Berglund,1999

2. Interrupted noise exposures: Threshold shift dynamics and permanent effects

3. Nuevos materiales absorbentes acústicos basados en fibra de kenaf

4. A model for acoustic absorbent materials derived from coconut fiber

5. WOOL4BUILD: Improved isolation material for eco-building based on natural wool;Rey Tormos;Revista de Acústica,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3