High-Expansion Open-Cell Polylactide Foams Prepared by Microcellular Foaming Based on Stereocomplexation Mechanism with Outstanding Oil–Water Separation

Author:

Li Dongsheng1,Zhang Shuai1,Zhao Zezhong1,Miao Zhenyun1,Zhang Guangcheng1,Shi Xuetao1

Affiliation:

1. Key Laboratory of Macromolecular Science & Technology of Shaanxi Province, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Biodegradable polylactic acid (PLA) foams with open-cell structures are good candidates for oil–water separation. However, the foaming of PLA with high-expansion and uniform cell morphology by the traditional supercritical carbon dioxide microcellular foaming method remains a big challenge due to its low melting strength. Herein, a green facile strategy for the fabrication of open-cell fully biodegradable PLA-based foams is proposed by introducing the unique stereocomplexation mechanism between PLLA and synthesized star-shaped PDLA for the first time. A series of star-shaped PDLA with eight arms (8-s-PDLA) was synthesized with different molecular weights and added into the PLLA as modifiers. PLLA/8-s-PDLA foams with open-cells structure and high expansion ratios were fabricated by microcellular foaming with green supercritical carbon dioxide. In detail, the influences of induced 8-s-PDLA on the crystallization behavior, rheological properties, cell morphology and consequential oil–water separation performance of PLA-based foam were investigated systemically. The addition of 8-s-PDLA induced the formation of SC-PLA, enhancing crystallization by acting as nucleation sites and improving the melting strength through acting as physical cross-linking points. The further microcellular foaming of PLLA/8-s-PDLA resulted in open-cell foams of high porosity and high expansion ratios. With an optimized foaming condition, the PLLA/8-s-PDLA-13K foam exhibited an average cell size of about 61.7 μm and expansion ratio of 24. Furthermore, due to the high porosity of the interconnected open cells, the high-absorption performance of the carbon tetrachloride was up to 37 g/g. This work provides a facile green fabrication strategy for the development of environmentally friendly PLA foams with stable open-cell structures and high expansion ratios for oil–water separation.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3