Abstract
In this study, different compatibilizing agents were used to analyze their influence on immiscible blends of polylactide (PLA) and biobased high-density polyethylene (bioPE) 80/20 (wt/wt). The compatibilizing agents used were polyethylene vinyl acetate (EVA) with a content of 33% of vinyl acetate, polyvinyl alcohol (PVA), and dicumyl peroxide (DPC). The influence of each compatibilizing agent on the mechanical, thermal, and microstructural properties of the PLA-bioPE blend was studied using different microscopic techniques (i.e., field emission electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy with PeakForce quantitative nanomechanical mapping (AFM-QNM)). Compatibilized PLA-bioPE blends showed an improvement in the ductile properties, with EVA being the compatibilizer that provided the highest elongation at break and the highest impact-absorbed energy (Charpy test). In addition, it was observed by means of the different microscopic techniques that the typical droplet-like structure is maintained, but the use of compatibilizers decreases the dimensions of the dispersed droplets, leading to improved interfacial adhesion, being more pronounced in the case of the EVA compatibilizer. Furthermore, the incorporation of the compatibilizers caused a very marked decrease in the crystallinity of the immiscible PLA-bioPE blend.
Subject
Polymers and Plastics,General Chemistry
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献