Point Cloud Compression: Impact on Object Detection in Outdoor Contexts

Author:

Garrote LuísORCID,Perdiz JoãoORCID,da Silva Cruz Luís A.ORCID,Nunes Urbano J.ORCID

Abstract

Increasing demand for more reliable and safe autonomous driving means that data involved in the various aspects of perception, such as object detection, will become more granular as the number and resolution of sensors progress. Using these data for on-the-fly object detection causes problems related to the computational complexity of onboard processing in autonomous vehicles, leading to a desire to offload computation to roadside infrastructure using vehicle-to-infrastructure communication links. The need to transmit sensor data also arises in the context of vehicle fleets exchanging sensor data, over vehicle-to-vehicle communication links. Some types of sensor data modalities, such as Light Detection and Ranging (LiDAR) point clouds, are so voluminous that their transmission is impractical without data compression. With most emerging autonomous driving implementations being anchored on point cloud data, we propose to evaluate the impact of point cloud compression on object detection. To that end, two different object detection architectures are evaluated using point clouds from the KITTI object dataset: raw point clouds and point clouds compressed with a state-of-the-art encoder and three different compression levels. The analysis is extended to the impact of compression on depth maps generated from images projected from the point clouds, with two conversion methods tested. Results show that low-to-medium levels of compression do not have a major impact on object detection performance, especially for larger objects. Results also show that the impact of point cloud compression is lower when detecting objects using depth maps, placing this particular method of point cloud data representation on a competitive footing compared to raw point cloud data.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

1. High-resolution LIDAR-based depth mapping using bilateral filter

2. Multimodal vehicle detection: fusing 3D-LIDAR and color camera data

3. Ultralytics/yolov5: V6.0—YOLOv5n ‘Nano’ Models, Roboflow Integration, TensorFlow Export, OpenCV DNN Support https://zenodo.org/record/5563715#.YujH3XZBxPZ

4. Review of LiDAR Sensor Data Acquisition and Compression for Automotive Applications

5. Technologies for 3D mesh compression: A survey

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3