A novel fast pedestrian recognition algorithm based on point cloud compression and boundary extraction

Author:

Zhang Yanjun

Abstract

Reason Pedestrian recognition has great practical value and is a vital step toward applying path planning and intelligent obstacle avoidance in autonomous driving. In recent years, laser radar has played an essential role in pedestrian detection and recognition in unmanned driving. More accurate high spatial dimension and high-resolution data could be obtained by building a three-dimensional point cloud. However, the point cloud data collected by laser radar is often massive and contains a lot of redundancy, which is not conducive to transmission and storage. So, the processing speed grows slow when the original point cloud data is used for recognition. On the other hand, the compression processing of many laser radar point clouds could save computing power and speed up the recognition processing. Methodology The article utilizes the fusion point cloud data from laser radar to investigate the fast pedestrian recognition algorithm. The focus is to compress the collected point cloud data based on the boundary and feature value extraction and then use the point cloud pedestrian recognition algorithm based on image mapping to detect pedestrians. This article proposes a point cloud data compression method based on feature point extraction and reduced voxel grid. Results The Karlsruhe Institute of Technology and Toyota Technological Institute data set is used to investigate the proposed algorithm experimentally. The outcomes indicate that the peak signal-to-noise ratio of the compression algorithm is improved by 6.02%. The recognition accuracy is improved by 16.93%, 17.2%, and 16.12%, corresponding to simple, medium, and difficult scenes, respectively, when compared with the point cloud pedestrian recognition method based on image mapping, which uses the random sampling method to compress the point cloud data. Conclusion The proposed method could achieve data compression better and ensure that many feature points are retained in the compressed Point Cloud Data (PCD). Thus, the compressed PCD achieves pedestrian recognition through an image-based mapping recognition algorithm.

Funder

Research on Key Technologies of Encoding and Decoding of Real-time Vehicular Lidar Point Cloud Sequences

Publisher

PeerJ

Subject

General Computer Science

Reference38 articles.

1. Research progress, challenges and trends of 3D laser scanning point cloud data processing;Bisheng;Journal of Surveying and Mapping,2017

2. Multi-view 3D object detection network for autonomous driving;Chen,2017

3. The compression method of point cloud data is based on the hypotenuse-height deviation method;Chenghui,2016

4. Structure aware single-stage 3D object detection from the point cloud;Chenhang,2020

5. CSPNet: a new backbone that can enhance the learning capability of CNN;Chien-Yao,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3