Myostatin Knockout Limits Exercise-Induced Reduction in Bovine Erythrocyte Oxidative Stress by Enhancing the Efficiency of the Pentose Phosphate Pathway

Author:

Zhu Lin,Bai Chunling,Wang Xueqiao,Wei ZhuyingORCID,Gu Mingjuan,Zhou Xinyu,Su Guanghua,Liu Xuefei,Yang LeiORCID,Li Guangpeng

Abstract

Moderate exercise can strengthen the body, however, exhaustive exercise generates large amounts of reactive oxygen species (ROS). Although erythrocytes have antioxidant systems that quickly eliminate ROS, erythrocytes become overwhelmed by ROS when the body is under oxidative stress, such as during exhaustive exercise. Myostatin (MSTN) has important effects on muscle hair development. Individuals lacking myostatin (MSTN) exhibit increased muscle mass. The purpose of this study was to investigate the mechanism by which MSTN affects erythrocyte antioxidant changes after exhaustive exercise in cattle. Antioxidant and metabolite detection analysis, western blotting, immunofluorescence, and fatty acid methyl ester analysis were used to assess exercise-associated antioxidant changes in erythrocytes with or without MSTN. Knockdown of MSTN enhances Glucose-6-phosphate dehydrogenase (G6PD) activity after exhaustive exercise. MSTN and its receptors were present on the erythrocyte membrane, but their levels, especially that of TGF-β RI, were significantly reduced in the absence of MSTN and following exhaustive exercise. Our results suggest that knockout of MSTN accelerates the pentose phosphate pathway (PPP), thereby enhancing the antioxidant capacity of erythrocytes. These results provide important insights into the role of MSTN in erythrocyte antioxidant regulation after exhaustive exercise.

Funder

the Genetically Modified Organisms Breeding Major Projects

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3