Analytical Dissection of an Automotive Li-Ion Pouch Cell

Author:

Kovachev ,Schröttner ,Gstrein ,Aiello ,Hanzu ,Wilkening ,Foitzik ,Wellm ,Sinz ,Ellersdorfer

Abstract

Information derived from microscopic images of Li-ion cells is the base for research on the function, the safety, and the degradation of Li-ion batteries. This research was carried out to acquire information required to understand the mechanical properties of Li-ion cells. Parameters such as layer thicknesses, material compositions, and surface properties play important roles in the analysis and the further development of Li-ion batteries. In this work, relevant parameters were derived using microscopic imaging and analysis techniques. The quality and the usability of the measured data, however, are tightly connected to the sample generation, the preparation methods used, and the measurement device selected. Differences in specimen post-processing methods and measurement setups contribute to variability in the measured results. In this paper, the complete sample preparation procedure and analytical methodology are described, variations in the measured dataset are highlighted, and the study findings are discussed in detail. The presented results were obtained from an analysis conducted on a state-of-the-art Li-ion pouch cell applied in an electric vehicle that is currently commercially available.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3