Influence of the Arrangement of the Cells/Modules of a Traction Battery on the Spread of Fire in Case of Thermal Runaway

Author:

Olona Ana1,Castejón Luis2ORCID

Affiliation:

1. Research Department, Electric Vehicle and Mobility Area, Instituto de Investigación Sobre Vehículos, S.A., Ctra. N232, km 273, 50690 Pedrola, Spain

2. Department of Mechanical Engineering, University of Zaragoza, C/María de Luna s/n, 50018 Zaragoza, Spain

Abstract

When designing the battery of an electric vehicle, different parameters must be considered to obtain the safest arrangement of the battery/modules/cells from the mechanical and thermal points of view. In this study, the thermal runaway propagation mechanism of lithium-ion cells is analyzed as a function of their arrangement within a battery pack in case of a fire propagation of a battery pack in which a thermal runaway has occurred. The objective is to identify which cell/module arrangement is most critical within the battery pack, using microscopic analysis of the structure and chemical composition of the most damaged cells, both horizontally and vertically, of a battery belonging to a burnt vehicle. And their final condition was compared with the condition of new cells of the same type. In this way, the structure and chemical composition of the cathode, anode, and separator after thermal runaway were compared. This research was carried out to obtain information to understand the mechanical properties of lithium-ion cells and their behavior after thermal runaway heating leading to the propagation of a fire. Through the analysis carried out, it is concluded that cells placed in a vertical arrangement have worse behavior than cells in a horizontal arrangement. Regarding the safety of the battery, the results of this study will allow us to determine which arrangement and structure of the cells in the battery pack is safer against thermal runaway due to thermal failure.

Funder

University of Zaragoza: Industrial Doctorate

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Reference42 articles.

1. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries;Noh;J. Power Sources,2013

2. (2023, November 28). Electrek 2018. Available online: https://electrek.co/2018/06/16/tesla-model-s-battery-fire-investigating/.

3. (2023, November 28). Yahoo!News. Available online: https://sg.news.yahoo.com/tesla-car-catches-fire-hong-kong-parking-lot-050418281--finance.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAClpkmgR9urlu5KzzVB-y0uh0DW8ghCIrL9EdFrWSrIT8vBTETyCHsDA7mD5_1traEOgmIBOpuOZXf4YnfLD95g-yLPIlILgysRGQE48TSCJ4CdwpZKHvgTWfNP0r98GLV4CHFC9g-qRRZo2c0GcQPZZ3X4LK_4Y66TUg90JdNlN.

4. (2023, November 28). CNN Business. Available online: https://edition.cnn.com/2019/05/16/business/tesla-fire-battery-software-update/index.html#:~:text=Tesla%20is%20upgrading%20the%20battery,and%20improve%20their%20overall%20longevity.

5. (2023, November 28). Electrek. Available online: https://electrek.co/2023/04/27/tesla-fire-police-believed-battery-arson/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3