Effect of Sample Interval on the Parameter Identification Results of RC Equivalent Circuit Models of Li-ion Battery: An Investigation Based on HPPC Test Data

Author:

Zhang Hehui,Deng Chang,Zong Yutong,Zuo Qingsong,Guo Haipeng,Song Shuai,Jiang Liangxing

Abstract

The validity of the equivalent circuit model (ECM), which is crucial for the development of lithium-ion batteries (LIBs) and state evaluation, is primarily dependent on the precision of the findings of parameter identification. In this study, the commonly used first-order RC (1-RC) circuit and second-order RC (2-RC) circuit models were selected for parameter identification. A time series of voltage with different sample intervals were used for function fitting based on the least square method, which were extracted from the hybrid pulse power characteristic (HPPC) test data of a commercial square punch LIB, and the sample intervals were set to be 0.1 s, 0.2 s, 0.5 s, and 1.0 s to evaluate the effect of sample interval on the parameter identification results. When the sample interval is more than 0.5 s, the results reveal that the 2-RC circuit model’s goodness of fit marginally declines, and for some data scenarios, the bias between the fitted terminal voltage curve and test curve increases obviously. With all of the sample intervals under consideration, the 1-RC circuit model’s imitative effect is satisfactory. This work demonstrates that the sample interval of data samples, in addition to the method itself, affects the accuracy and robustness of parameter identification, with the 1-RC circuit model showing larger advantages under low sample frequency compared to the 2-RC circuit model.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3