C-Rate- and Temperature-Dependent State-of-Charge Estimation Method for Li-Ion Batteries in Electric Vehicles

Author:

Aslan Eyyup12,Yasa Yusuf3ORCID

Affiliation:

1. Aurora Flight Sciences, a Boeing Company, Manassas, VA 20110, USA

2. Electrical and Electronics Engineering Department, Bursa Technical University, 16310 Bursa, Turkey

3. Electrical Engineering Department, Istanbul Technical University, 34485 Istanbul, Turkey

Abstract

Li-ion batteries determine the lifespan of an electric vehicle. High power and energy density and extensive service time are crucial parameters in EV batteries. In terms of safe and effective usage, a precise cell model and SoC estimation algorithm are indispensable. To provide an accurate SoC estimation, a current- and temperature-dependent SoC estimation algorithm is proposed in this paper. The proposed SoC estimation algorithm and equivalent circuit model (ECM) of the cells include current and temperature effects to reflect real battery behavior and provide an accurate SoC estimation. For including current and temperature effects in the cell model, lookup tables have been used for each parameter of the model. Based on the proposed ECM, the unscented Kalman filter (UKF) approach is utilized for estimating SoC since this approach is satisfactory for nonlinear systems such as lithium-ion batteries. The experimental results reveal that the proposed approach provides superior accuracy when compared to conventional methods and it is promising in terms of meeting electric vehicle requirements.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3