An Industrial Perspective and Intellectual Property Landscape on Solid-State Battery Technology with a Focus on Solid-State Electrolyte Chemistries

Author:

Karkar Zouina1ORCID,Houache Mohamed S. E.1,Yim Chae-Ho1ORCID,Abu-Lebdeh Yaser1

Affiliation:

1. National Research Council of Canada, Energy, Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada

Abstract

This review focuses on the promising technology of solid-state batteries (SSBs) that utilize lithium metal and solid electrolytes. SSBs offer significant advantages in terms of high energy density and enhanced safety. This review categorizes solid electrolytes into four classes: polymer, oxide, hybrid, and sulfide solid electrolytes. Each class has its own unique characteristics and benefits. By exploring these different classes, this review aims to shed light on the diversity of materials and their contributions to the advancement of SSB technology. In order to gain insights into the latest technological developments and identify potential avenues for accelerating the progress of SSBs, this review examines the intellectual property landscape related to solid electrolytes. Thus, this review focuses on the recent SSB technology patent filed by the main companies in this area, chosen based on their contribution and influence in the field of batteries. The analysis of the patent application was performed through the Espacenet database. The number of patents related to SSBs from Toyota, Samsung, and LG is very important; they represent more than 3400 patents, the equivalent of 2/3 of the world’s patent production in the field of SSBs. In addition to focusing on these three famous companies, we also focused on 15 other companies by analyzing a hundred patents. The objective of this review is to provide a comprehensive overview of the strategies employed by various companies in the field of solid-state battery technologies, bridging the gap between applied and academic research. Some of the technologies presented in this review have already been commercialized and, certainly, an acceleration in SSB industrialization will be seen in the years to come.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3