Advancing electric mobility with lithium-ion batteries: A materials and sustainability perspective

Author:

Promi Anika,Meyer Katelyn,Ghosh Rupayan,Lin FengORCID

Abstract

AbstractIn the last three decades, lithium-ion batteries (LIBs) have become one of the most influential technologies in the world, allowing the widespread adoption of consumer electronics and now electric vehicles (EVs), a key technology for tackling climate change. Decades of research in both academia and industry have led to the development of diverse chemistries for LIB components, aligning these technological advancements with global carbon neutrality goals. In this article, we discuss the fundamental materials chemistries employed in LIBs for EVs, focusing on how materials-level properties influence the electrochemical performance of the battery. We elaborate on factors such as supply-chain sustainability, raw materials availability, and geopolitical influences that shape the market dynamics of these battery materials. Additionally, we delve into current innovative materials design strategies aimed at enhancing the performance of LIBs, with a focus on improving energy density, safety, stability, and fast-charging capabilities. Finally, we offer our insights into the future trajectory of EV batteries, considering the ongoing research trends and evolving landscape of EVs in the context of global efforts toward a more sustainable and environmentally friendly transportation system. Graphical abstract

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Reference94 articles.

1. US Environmental Protection Agency (EPA), Carbon Pollution from Transportation (EPA, Washington, DC, n.d.). https://www.epa.gov/transportation-air-pollution-and-climate-change/carbon-pollution-transportation. Accessed 22 Jan 2024

2. MIT Energy Initiative, Insights Into Future Mobility (MIT Energy Initiative, Cambridge, 2019). https://energy.mit.edu/wp-content/uploads/2019/11/Insights-into-Future-Mobility.pdf. Accessed 22 Jan 2024

3. Ford Intelligent Backup Power. https://www.ford.com/trucks/f150/f150-lightning/features/intelligent-backup-power/. Accessed 22 Jan 2024

4. J. Carey, Proc. Natl. Acad. Sci. U.S.A. 120(3), e2220923120 (2023). https://doi.org/10.1073/pnas.2220923120

5. International Energy Agency (IEA), Global EV Outlook 2023 (IEA, Paris, n.d.). https://iea.blob.core.windows.net/assets/dacf14d2-eabc-498a-8263-9f97fd5dc327/GEVO2023.pdf. Accessed 22 Jan 2024

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3