Environmental Aspects and Recycling of Solid-State Batteries: A Comprehensive Review

Author:

Machín Abniel1ORCID,Cotto María C.2,Díaz Francisco2,Duconge José2,Morant Carmen3ORCID,Márquez Francisco2ORCID

Affiliation:

1. Environmental Catalysis Research Lab, Division of Science, Technology and Environment, Cupey Campus, Universidad Ana G. Méndez, Cupey, PR 00926, USA

2. Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA

3. Department of Applied Physics, Instituto de Ciencia de Materiales Nicolás Cabrera, Autonomous University of Madrid, 28049 Madrid, Spain

Abstract

Solid-state batteries (SSBs) have emerged as a promising alternative to conventional lithium-ion batteries, with notable advantages in safety, energy density, and longevity, yet the environmental implications of their life cycle, from manufacturing to disposal, remain a critical concern. This review examines the environmental impacts associated with the production, use, and end-of-life management of SSBs, starting with the extraction and processing of raw materials, and highlights significant natural resource consumption, energy use, and emissions. A comparative analysis with traditional battery manufacturing underscores the environmental hazards of novel materials specific to SSBs. The review also assesses the operational environmental impact of SSBs by evaluating their energy efficiency and carbon footprint in comparison to conventional batteries, followed by an exploration of end-of-life challenges, including disposal risks, regulatory frameworks, and the shortcomings of existing waste management practices. A significant focus is placed on recycling and reuse strategies, reviewing current methodologies like mechanical, pyrometallurgical, and hydrometallurgical processes, along with emerging technologies that aim to overcome recycling barriers, while also analyzing the economic and technological challenges of these processes. Additionally, real-world case studies are presented, serving as benchmarks for best practices and highlighting lessons learned in the field. In conclusion, the paper identifies research gaps and future directions for reducing the environmental footprint of SSBs, underscoring the need for interdisciplinary collaboration to advance sustainable SSB technologies and contribute to balancing technological advancements with environmental stewardship, thereby supporting the transition to a more sustainable energy future.

Funder

NSF Center for the Advancement of Wearable Technologies—CAWT

Spanish Ministry of Economy and Competitiveness

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3