Degradation Evaluation of Lithium-Ion Batteries in Plug-In Hybrid Electric Vehicles: An Empirical Calibration

Author:

Cai Hongchang1,Hao Xu2ORCID,Jiang Yong2,Wang Yanan3ORCID,Han Xuebing3,Yuan Yuebo3,Zheng Yuejiu1,Wang Hewu3ORCID,Ouyang Minggao3

Affiliation:

1. College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

3. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China

Abstract

Battery life management is critical for plug-in hybrid electric vehicles (PHEVs) to prevent dangerous situations such as overcharging and over-discharging, which could cause thermal runaway. PHEVs have more complex operating conditions than EVs due to their dual energy sources. Therefore, the SOH estimation for PHEV vehicles needs to consider the specific operating characteristics of the PHEV and make calibrations accordingly. Firstly, we estimated the initial SOH by combining data-driven and empirical models. The data-driven method used was the incremental state of charge (SOC)-capacity method, and the empirical model was the Arrhenius model. This method can obtain the battery degradation trend and predict the SOH well in realistic applications. Then, according to the multiple characteristics of PHEV, we conducted a correlation analysis and selected the UF as the calibration factor because the UF has the highest correlation with SOH. Finally, we calibrated the parameters of the Arrhenius model using the UF in a fuzzy logic way, so that the calibrated fitting degradation trends could be closer to the true SOH. The proposed calibration method was verified by a PHEV dataset that included 11 vehicles. The experiment results show that the root mean square error (RMSE) of the SOH fitting after UF calibration can be decreased by 0.2–14% and that the coefficient of determination (R2) for the calibrated fitting trends can be improved by 0.5–32%. This provides more reliable guidance for the safe management and operation of PHEV batteries.

Funder

Chongqing Science and Technology Commission

National Natural Science Foundation of China

High-safety, All-Climate Power Battery and Electric Chassis Integrated Design and Development program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3