Multi-Fault Diagnosis of Electric Vehicle Power Battery Based on Double Fault Window Location and Fast Classification

Author:

Shen Xiaowei1,Lun Shuxian1,Li Ming1

Affiliation:

1. College of Control Science and Engineering, Bohai University, Jinzhou 121013, China

Abstract

As energy supply units, lithium-ion batteries have been widely used in the electric vehicle industry. However, the safety of lithium-ion batteries remains a significant factor limiting their development. To achieve rapid fault diagnosis of lithium-ion batteries, this paper presents a comprehensive fault diagnosis process. Firstly, an interleaved voltage sensor topology structure is utilized to acquire battery voltage data. An improved complete ensemble empirical mode decomposition with adaptive noise method is introduced to process data. Then, the reconstructed voltage data sequence is used to eliminate the influence of noise. A fault location is performed using dichotomy correlation coefficient and time window correlation coefficient. Afterwards, principal component analysis is used to select the principal components with high contribution rate as classification features. The gray wolf optimization algorithm is used to find the parameters of the least squares support vector machine, constructing an optimal classifier for fault classification. A fault experiment platform is established to realize the physical triggering of faults such as external short circuit, internal circuit, and connection of experimental battery packs. Finally, the accuracy and reliability of the method are verified by the results of fault localization and fault type determination.

Funder

National Natural Science Foundation of China

Key Project of Education Department of Liaoning Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3