Structure Simulation and Equilibrium Evaluation Analysis of Regional Water Resources, Society, Economy and Ecological Environment Complex System

Author:

Wu Chengguo,Wang Xiaoyu,Jin Juliang,Zhou YuliangORCID,Bai Xia,Zhou Liangguang,Tong Fang,Zhang Libing,Cui Yi

Abstract

Currently, the implementation of water resource spatial equilibrium strategy is a fundamental policy of water resource integrated management in China; it is also a considerable challenge to explore the relationship structure features of water resources, society, economy and ecological environment (WSEE) complex system. For this purpose, firstly, we applied information entropy, ordered degree and connection number coupling method to reveal the membership characteristics between different evaluation indicators and grade criterion. Secondly, the system dynamics approach was introduced to describe the relationship features among different equilibrium subsystems. Finally, the ordered degree, connection number, information entropy and system dynamics integrated model was established to conduct relationship structure simulation and evolution trend evaluation of the WSEE system. The application results in Hefei city, Anhui Province, China, demonstrated that: (1) the variation of overall equilibrium conditions of WSEE system in Hefei city, 2020–2029 was higher compared to that of 2010–2019, though the increasing rate of ordered degree and connection number entropy (ODCNE) became slower after 2019; and (2) the annual ODCNE value from 2020 to 2029 of WSEE system under dry year scenarios increased about 0.0812, which indicated that the construction of Yangtze-Huaihe Diversion (YHD) project could play significant positive role in mitigating the equilibrium situation of WSEE system in Hefei city in the future. On the whole, this study is capable of providing the guidance basis for constructing a theoretical framework of structure simulation and equilibrium evaluation analysis of WSEE complex system.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3