Joint Optimization of Urban Water Quantity and Quality Allocation in the Plain River Network Area

Author:

Zhao Jun12ORCID,Fang Guohua3,Wang Xue4,Zhong Huayu3

Affiliation:

1. College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China

2. College of Civil and Hydraulic Engineering, Bengbu University, Bengbu 233030, China

3. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210024, China

4. Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, China

Abstract

Cities located in the plain river network area possess abundant water resources. However, due to urbanization and industrialization, there is a severe water shortage problem caused by poor water quality. To overcome this issue, a multi-objective optimal allocation model of water quantity and quality is proposed. The model considers regional water resources, economic, social, and environmental requirements and uses the NSGA-II genetic algorithm for model solution. Furthermore, to evaluate and analyze the degree of spatial equilibrium of regional water resources and how it relates to economic factors, the study uses the spatial equilibrium theory of water resources and the Gini coefficient of water resources. Jingjiang, a city in Jiangsu Province characterized by a typical plain river network area, was selected as the study area. The results of the optimal allocation of water resources in Jingjiang City show that: (1) total water consumption and chemical oxygen demand (COD) emissions for the current planning period are within their respective limits. In addition, the implementation of the water conservation program has resulted in a 5% reduction in total water shortages and a reduction of COD emissions by 1276 tons, (2) the structure of the water supply in Jingjiang City has been optimized; more than 90% of Ⅳ~V surface water is used for agriculture, and the domestic water supply is mainly from transit water, which effectively ensures that high-quality water is used in the domestic water supply, (3) the spatial equilibrium coefficient of water resources per sub-area is between 0.33 and 0.74, indicating an unbalanced or almost unbalanced level. The application of a water conservation program has resulted in the improvement of the spatial equilibrium level of water resources in each sub-area, with an overall spatial equilibrium of 0.64, indicating a more balanced level; the degree of matching of water resources with population, GDP, and land area is at the matching level, (4) according to the Gini coefficient of the distribution of water resources, the plains river network area displays a better match between water resources and economic and social factors of each water receiving area, thanks to its unique geographical location and natural conditions. This study can serve as a decision-making reference for addressing the urban water quality water shortage problem in the plain river network area.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3