Time-Optimal Trajectory Planning and Tracking for Autonomous Vehicles

Author:

Li Jun-Ting1ORCID,Chen Chih-Keng1ORCID,Ren Hongbin2ORCID

Affiliation:

1. Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10604, Taiwan

2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

This article presents a hierarchical control framework for autonomous vehicle trajectory planning and tracking, addressing the challenge of accurately following high-speed, at-limit maneuvers. The proposed time-optimal trajectory planning and tracking (TOTPT) framework utilizes a hierarchical control structure, with an offline trajectory optimization (TRO) module and an online nonlinear model predictive control (NMPC) module. The TRO layer generates minimum-lap-time trajectories using a direct collocation method, which optimizes the vehicle’s path, velocity, and control inputs to achieve the fastest possible lap time, while respecting the vehicle dynamics and track constraints. The NMPC layer is responsible for precisely tracking the reference trajectories generated by the TRO in real time. The NMPC also incorporates a preview algorithm that utilizes the predicted future travel distance to estimate the optimal reference speed and curvature for the next time step, thereby improving the overall tracking performance. Simulation results on the Catalunya circuit demonstrated the framework’s capability to accurately follow the time-optimal raceline at an average speed of 116 km/h, with a maximum lateral error of 0.32 m. The NMPC module uses an acados solver with a real-time iteration (RTI) scheme, to achieve a millisecond-level computation time, making it possible to implement it in real time in autonomous vehicles.

Funder

National Science and Technology Council

NTUT-BIT Joint Research Program

Publisher

MDPI AG

Reference33 articles.

1. Mind the gap: Developments in autonomous driving research and the sustainability challenge;Mora;J. Clean. Prod.,2020

2. (2021). Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (Standard No. SAE Standard J3016_202104).

3. Autonomous vehicular overtaking maneuver: A survey and taxonomy;Lodhi;Veh. Commun.,2023

4. Autonomous Vehicles on the Edge: A Survey on Autonomous Vehicle Racing;Betz;IEEE Open J. Intell. Transp. Syst.,2022

5. Goh, J.Y., Thompson, M., Dallas, J., and Balachandran, A. (2024). Beyond the stable handling limits: Nonlinear model predictive control for highly transient autonomous drifting. Veh. Syst. Dyn., 1–24.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3