Comparative Study on Potential Landslide Identification with ALOS-2 and Sentinel-1A Data in Heavy Forest Reach, Upstream of the Jinsha River

Author:

Cao Chen,Zhu Kuanxing,Song Tianhao,Bai Ji,Zhang Wen,Chen Jianping,Song ShengyuanORCID

Abstract

Many SAR satellites such as the ALOS-2 satellite and Sentinel-1A satellite can be used in Interferometric Synthetic Aperture Radar (InSAR) to identify landslides. As their wavelengths are different, they can perform differently in the same area. In this study, we selected the alpine canyon heavy forest area of the Baishugong–Shangjiangxiang section of the Jinsha River with a strong uplift of faults and folds as the study area. The Small Baseline Subset (SBAS)–InSAR was used for landslide identification to compare the reliability and applicability of L-band ALOS-2 data and C-band Sentinel-1A data. In total, 13 potential landslides were identified, of which 12 potential landslides were identified by ALOS-2 data, two landslides were identified by Sentinel-1A data, and the Kongzhigong (KZG) landslide was identified by both datasets. Then, the field investigation was used to verify the identification results and analyze the genetic mechanism of four typical landslides. Both the Duila (DL) and KZG landslides are bedding slip, while the Jirenhe (JRH) and Maopo (MP) landslides are creep–pull failure. Then, the difference between ALOS-2 and Sentinel-1A data on KZG landslide was compared. A total of 35,961 deformation points on the KZG landslide were obtained using ALOS-2 data, which are relatively dense. Meanwhile, a total of 7715 deformation points were obtained by Sentinel-1A data, which are relatively scattered and seriously lacking, especially in areas with dense vegetation coverage. Comparing the advantages of ALOS-2 and Sentinel-1A data and the identification results of potential landslides, the reliability and applicability of ALOS-2 data in the identification of potential landslides in areas with dense vegetation cover and complex geological conditions were confirmed from the aspects of vegetation cover, topography, field investigation, and comparative analysis of typical landslides.

Funder

The 2nd Research Announcement on the Earth Observations

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3