Identifying Potential Landslides by Stacking-InSAR in Southwestern China and Its Performance Comparison with SBAS-InSAR

Author:

Zhang Lele,Dai KerenORCID,Deng Jin,Ge Daqing,Liang Rubing,Li WeileORCID,Xu Qiang

Abstract

Landslide disasters occur frequently in the mountainous areas in southwest China, which pose serious threats to the local residents. Interferometry Synthetic Aperture Radar (InSAR) provides us the ability to identify active slopes as potential landslides in vast mountainous areas, to help prevent and mitigate the disasters. Quickly and accurately identifying potential landslides based on massive SAR data is of great significance. Taking the national highway near Wenchuan County, China, as study area, this paper used a Stacking-InSAR method to quickly and qualitatively identify potential landslides based on a total of 40 Sentinel SAR images acquired from November 2017 to March 2019. As a result, 72 active slopes were successfully detected as potential landslides. By comparing the results from Stacking-InSAR with the results from the traditional SBAS-InSAR (Small Baselines Subset) time series method, it was found that the two methods had a high consistency, with 81.7% potential landslides identified by both of the two methods. A detailed comparison on the detection differences was performed, revealing that Stacking-InSAR, compared to SBAS-InSAR may miss a few active slopes with small spatial scales, small displacement levels and the ones affected by the atmosphere, while it has good performance on poor-coherence regions, with the advantages of low technical requirements and low computation labor. The Stacking-InSAR method would be a fast and powerful method to qualitatively and effectively identify potential landslides in vast mountainous areas, with a comprehensive understanding of its specialty and limitations.

Funder

National Natural Science Foundation of China Major Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3